Patterns of larval dispersal of the invasive green mussel throughout the GTMNERR

Matthew R. Gilg, Jennifer Jetchev, Peter Sheng*, Ryan Turner, Michael Middlebrook and Ryan Howard University of North Florida *University of Florida

Introduced Species

- Can cause both ecological and economic damage (U.S. \$137 billion/year; Pimentel et al., 2000)
- Second only to habitat destruction as cause of local extinctions
- But, offer outstanding opportunities to study many ecological and evolutionary processes in "real time"
 - Adaptation, competition, dispersal, range expansion

Green Mussel (Perna viridis) Biology

- Native to Indo-Pacific
- Occupies low intertidal and high subtidal habitats
- Utilizes hard substrates
- Tropical
- Brackish/saltwater
- Larval period ~3 weeks

- Grows quickly, can become reproductive 3 months after settlement
- Known biofouler clogs pipes, attaches to ships, etc.
- Suggested to have displaced oysters in some areas in Tampa Bay

History of Introductions

1990 Trinidad 1995 Venezuela 1998 Jamaica 1999 Tampa Bay, FL 2002 St. Augustine, FL 2003 Savannah, GA (Agard et al., 1992; Rylander et al., 1996; Benson et al., 2001; Ingrao et al., 2001; Buddo et al., 2003)

Predicting Population Expansion

- Ecological Niche Models (ENM) utilize data on an organism's biology to determine which habitats are likely to be occupied in the future
 - Habitat preferences (Gilg et al., 2010)
 - Environmental limitations (Urian et al., 2011)
 - Dispersal capability

Dispersal in Marine Invertebrates

- Extremely difficult to measure
 - Genetic Markers
 - Chemical Signature
- Population spread from known sites of origin

Green mussel population centers

Questions

- Is green mussel larval settlement habitat dependent?
- How far do green mussel larvae typically disperse (both average and maximum distance)?
- Are dispersal patterns predicted by physical oceanography of the Intracoastal Waterway?

Collection Sites

- 13 total sites (9 within channel of ICW, 4 in adjacent feeder creeks)
- Vary in distance from population centers
- 4 channel sites at same distance from inlets as the 4 creek sites

Spat Collection

- Monthly collections of four tiles at each site
- Number of green mussel spat enumerated on each tile
- Mean spat density determined for each site in each month

Is larval settlement habitat dependent?

Significant differences in 3 out of 4 comparisons.

How far do green mussel larvae typically disperse?

Are dispersal patterns predicted by physical oceanography of the Intracoastal Waterway?

Conclusions

- Is green mussel larval settlement habitat dependent?
 - Yes; little settlement in feeder creeks
- How far do green mussel larvae typically disperse (both average and maximum distance)?
 - Most settlement within 10 km of source. Maximum distance detected nearly 20 km.
- Are dispersal patterns predicted by physical oceanography of the Intracoastal Waterway?
 - Not correlated. Models predict most larvae will move south > 100 km.

Questions?

- Acknowledgements: Katie Petrinic and the GTM NERR staff
- Funding from

