Greenhouse gas emissions may correlate with soil stability in salt marshes behind shoreline oyster shell formations

Cathilyn McIntosh¹, Scott F. Jones², Lisa G. Chambers³, Samantha K. Chapman¹, R. Kelman Wieder¹, J. Adam Langley¹

Department of Biology, Villanova University, ²University of Northern Florida, ³University of Central Florida

Soil

100

-25

-75

-100

Background

- Salt marshes are carbon (C) sinks, offsetting natural methane (CH₄) and carbon dioxide (CO₂) emissions
- Changes to hydrology influence inundation frequency and alter sulfate inputs from sea water, both of which impact greenhouse gas (GHG) emissions
- Oyster rakes are large shell accumulations along marsh edges that rise above sea level
- Uncertainty remains regarding the impact of oyster rakes on tidal regulation and their potential influence on wetland stability and GHG dynamics

Questions

- Do GHG emissions differ between stable and unstable plots in marshes behind oyster rakes?
- Do plant traits and porewater chemistry alter GHG emissions in stable and unstable plots?

Methods

Site Location in GTMNEER

Sites 1 & 2 measured in July
Sites 2 & 4 measured in October

Additional measurements:

- Estimation of plant biomass
- Porewater sulfate at depth

Soil stability via penetrometer

Estimation of soil compaction (Pascals, Pa) across depth obtained through five drop tests per plot using a standardized weight and drop height

GHG flux measurements

CO₂ and CH₄ emissions were measured within each plot

GHG Source	Method or Chamber type	
Ecosystem	Clear chamber	
Soils	Dark PVC chamber	
Plants	Estimated (ecosystem - soils)	

Unstable → Stable → July → October Plant Ecosystem Ecosystem

Figure 1: Greenhouse gas emissions behind oyster rakes in stable and unstable plots across different sites and time points. A) CH₄ emission rates for soils, plants, or ecosystems (soil + plants). B) CO₂ emission rates for whole ecosystem (soil + plants). Stable plots appear to be driven by plant CH₄ emissions and unstable plots appear to be driven by soil CH₄ emissions.

Results

Figure 2: Soils with lower stability may emit greater CH_4 emissions. A) Relationship between CH_4 emissions and soil stability (p= 0.077, R²=0.096). Soil resistance was measured in October at sites 2 and 4. CH_4 emissions represent a whole ecosystem flux. B) Schematic illustrating the relationship between soil resistance and CH_4 emissions.

Figure 3: Porewater sulfate concentrations in stable plots may show a more dramatic decrease within the root zone (5-15 cm). Figure illustrates porewater sulfate concentrations at depth in stable and unstable plots. Samples were taken in October from sites 1 and 2.

Conclusions and Relevance

- Stable plots appear to be driven by plant CH₄ emissions
- Unstable plots appear to be driven by soil CH₄ emissions.
- Soil stability may serve as an indicator of GHG emissions
- Porewater sulfate may elucidate differences in GHG cycling
 - Hydrological cycling
- Plant effects

Funding & Acknowledgements

Tess Adgie, Shannon Brew, Jocelyn Bravo, Aaron Freeman, Philip Rivera, Alia Al-Haj, the WE~ECO lab, the WETFEET lab

