
Soil stability via penetrometer
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Methods

Background Results 

Conclusions and Relevance
• Stable plots appear to be driven 
by plant CH4 emissions

• Unstable plots appear to be 
driven by soil CH4 emissions. ajd

• Do GHG emissions differ between stable and unstable plots in marshes 
behind oyster rakes? 

aksdalsjk

• Do plant traits and porewater chemistry alter GHG emissions in stable and 
unstable plots?
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• Salt marshes are carbon (C) sinks, offsetting natural 
methane (CH4) and carbon dioxide (CO2) emissions

• Changes to hydrology influence inundation frequency 
and alter sulfate inputs from sea water, both of which 
impact greenhouse gas (GHG) emissions

• Oyster rakes are large shell accumulations along 
marsh edges that rise above sea level

• Uncertainty remains regarding the impact of oyster 
rakes on tidal regulation and their potential influence 
on wetland stability and GHG dynamics

Questions
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Additional measurements:
jhdbckahsbd

– Estimation of plant biomass
jhdbckahsbd

– Porewater sulfate at depth 
 

Figure 1: Greenhouse gas emissions behind oyster rakes in stable and unstable plots across different sites and time points. A) 
CH4 emission rates for soils, plants, or ecosystems (soil + plants). B) CO2 emission rates for whole ecosystem (soil + plants). Stable plots 
appear to be driven by plant CH4 emissions and unstable plots appear to be driven by soil CH4 emissions. 

Figure 2: Soils with lower stability may emit greater CH4 emissions. A) 
Relationship between CH4 emissions and soil stability (p= 0.077, R2=0.096). Soil 
resistance was measured in October at sites 2 and 4. CH4 emissions represent a 
whole ecosystem flux. B) Schematic illustrating the relationship between soil 
resistance and CH4 emissions.
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Figure 3: Porewater sulfate concentrations in 
stable plots may show a more dramatic 
decrease within the root zone (5-15 cm). Figure 
illustrates porewater sulfate concentrations at 
depth in stable and unstable plots. Samples were 
taken in October from sites 1 and 2. 
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Estimation of soil compaction (Pascals, Pa) 
across depth obtained through five drop tests 
per plot using a standardized weight and drop 
height
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• Soil stability may serve as an 
indicator of GHG emissions

• ajdbc

• Porewater sulfate may elucidate 
differences in GHG cycling
• Hydrological cycling 
• Plant effects
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