


Biomonitoring for Estuarine Health: Developing a DNA Metabarcoding Toolkit for Assessing Changing Plankton Communities GTM Ashley Reaume¹, Nikki Dix², Gabby Canas² and Michelle R. Gaither¹ ¹Department of Biology, University of Central Florida RESEARCH RESERV ²Guana Tolomato Matanzas National Estuarine Research Reserve DNA metabarcoding detects similar plankton communities to microscopy. Metabarcoding ASVs (≥5) Microscopy Taxa Shared Phyla Bacillariophyta Chlorophyta Cryptophyta Myzozoa Porifera Other Metabarcoding Phyla (≥5 ASVs) Other Microscopy Phyla Annelida 🔍 Cnidaria Mollusca Oomycota Bigyra Cyanophyta Ochrophyta Cercozoa **DNA CONCENTRATION (nG/\mu L) PRELIMINARY RESULTS** Turbid water (LM site) produced greater mean DNA concentrations. Site The Qiagen Power Soil Kit resulted in a significantly higher (p<0.05; LM) **–** – FM mean DNA concentration than all kits in turbid water and 3 kits (OES, — LM OMT, & QPP) in clear water. Metabarcoding detected 22 unique phyla and microscopy detected 1 unique phylum (a bacteria). 20 A similar composition of phyla were resolved between both methods. Metabarcoding improved taxonomic resolution. **NEXT STEPS** 10 Optimize the bioinformatics pipeline to generate ASVs for remaining samples and compare to multiple databases. __ I __ I Sequence using the 16S V3-V4 primer region to detect bacteria. Use this toolkit to sequence plankton from 10 sites across the GTM over QPS OBB OĖS OM⁻ QBB QB^{-} QPP

BACKGROUND

Plankton communities are key components of estuarine ecosystems and serve as bioindicators of environmental changes. DNA metabarcoding is a tool that can efficiently expand upon traditional plankton monitoring methods.

OBJECTIVE

Optimize a DNA metabarcoding protocol for monitoring plankton communities in the Guana Tolomato Matanzas (GTM) National Estuarine Research Reserve.

METHODS

Samples were collected at Ft. Matanzas (FM) and Lake Middle (LM) for metabarcoding and microscopy analysis:

- DNA was extracted using 7 different kits, which differ in lysis method, PCR inhibitor removal, and cost.
- The 18S V9 rRNA region was amplified and sequenced following a two-step PCR protocol and Illumina MiSeq.
- Amplicon sequence variants (ASVs; unique 3. sequences) were determined using an in-house bioinformatics pipeline.
- Taxa were compared between one 4. metabarcoding and microscopy sample from FM.

Extraction Methods

- the course of a year and synthesize these data with water quality.

