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Abstract

Due to rapidly changing ecosystems, effective environ-
mental protection often calls for the monitoring of the
vegetation for any environmental changes. Vegetation
monitoring is essential in assessing the changes and
impacts to environmentally valuable ecosystems such
as marshlands. While vegetation monitoring of marsh
grasses is crucial to the maintenance and protection of
marshlands, it is a tedious and time-consuming task that
involves careful examination of individual pixels within
large resolution images. In this study we compare the
use of Vision Transformers (ViT) and two different Ef-
ficientNet models on automated marsh grass identifica-
tion using the GTMNERR Marsh Grass Species data
set. Our results show that the use of a ViT allowed for
an increase in the accuracy of marsh grass identification.
The Vision Transformer was also able to better distin-
guish between the 6 classes in the data set and provided
competitive training time to the smaller of the two Effi-
cientNet models tested in this study.

Introduction
Marshlands and coastal wetlands are among the most im-
portant and endangered ecosystems. Coastal wetlands and
marshlands provide not only a nursery for a variety of flora
and fauna but also coastal protection from storms and ma-
jor contribution to environmental carbon sequestration (Bar-
bier et al. 2011). These vitally important ecosystems are also
easily disturbed by habitat loss as well as any rise in sea-
levels (Warren and Niering 1993). In order to effectively pre-
serve marshlands, vegetation monitoring is commonly im-
plemented as a means to assess vegetation coverage and the
vegetation composition within the marsh. The monitoring of
vegetation coverage and composition can lend insights into
the health of the marsh and the various inhabitants that rely
on this vegetation. Such monitoring is commonly carried out
in research preserves such as the Guana Tolomato Matanzas
National Estuarine Research Reserve (GTMNERR).

Researchers at GTMNERR utilize high resolution cam-
eras in their efforts to monitor vegetation density and com-
position (Bacopoulos, Tritinger, and Dix 2019). The images
taken using these cameras are one meter-square and contain
a variety of vegetated or non-vegetated regions of the marsh.
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Randomly selected snippets from each one meter-square im-
age are then manually labeled by trained experts and volun-
teers. These trained individuals will label each snippet with
the percentage of vegetation coverage; manually tallying the
species present with one of 6 labels. Due to the high resolu-
tion image size as well as the manual tallying of species in
each snippet of the high resolution image, this task can be
tedious and time consuming. The automation of such time-
consuming tasks has the possibility of saving both time and
important resources. The automation of this manual identi-
fication of marsh species has previously been investigated
using convolutional neural networks (CNN) (Welch et al.
2021; Welch and Liu 2021). While CNNs are often the al-
gorithm of choice for object detection and image classifica-
tion tasks (LeCun, Bengio, and Hinton 2015), a recently pro-
posed network architecture known as a Vision Transformer
(ViT) has shown to provide equivalent or greater perfor-
mance at these tasks (Dosovitskiy et al. 2020). We are not
aware of any research that has investigated the usage of the
use of the ViT architecture as a solution to marsh species
identification while also simultaneously comparing the find-
ings to a CNN with comparable performance to a ViT. One
such CNN that touts performance comparable to ViT is Ef-
ficientNet(Tan and Le 2019). As of this study, both Effi-
cientNet and ViT architectures rank in the top 10 algorithms
for Top 1 Accuracy on ImageNet classification (Krizhevsky,
Sutskever, and Hinton 2012).

The goal of this study is to 1. Train both EfficientNet and
ViT marsh species classification algorithms and 2. Compare
the performance between both algorithms in their ability to
classify marsh species within the GTMNERR data set. We
compare algorithm performance using the accuracy, Area
under the Receiver Operator Characteristic (AUROC), and
the time required to train each algorithm in seconds per
epoch for each of the models included in this study.

Methodology
GTMNERR Marsh Grass Species dataset
The GTMNERR Marsh Grass Species dataset (Guana Tolo-
mato Matanzas National Estuarine Research Reserve, Ponte
Vedra Beach, FL, https://gtmnerr.org/) contains 1 meter by
1 meter photoquadrats of marsh that contains various grass
species. One example is given in Figure 1.



Figure 1: GTMNERR photoquadrat example

Welch et al. (Welch et al. 2021; Welch and Liu 2021) sam-
pled 77,630 image snippets from these photoquadrats taken
at the Guana Tolomato Matanzas marine sanctuary 1. These
snippets are each of size 33 x 33 and labeled with either Avi-
cennia, Bare/Non-vegetated, Batis Maritima, Spartina, Jun-
cus, and Sarcoconia. Figure 2 shows an example of each of
the labels present in the data set. Images were matched with
their labels and were indexed into a JSON file which could
be used to load the images and refer to their correspond-
ing label. Creation of 5 folds of the entire dataset of 77,630
image snippets was performed so that determination of any
variation in algorithm performance could be observed.

Transfer Learning
Transfer learning is the process of transferring the weights
of a model trained on a different more generalized data set to
a model that will be trained on a more specific data set. The
idea that most images all share basic common characteris-
tics allows us to fine tune the weights of a transferred model
to better perform on our more specific data set of images.
We have implemented transfer learning for both the Vision
Transformer and the EfficientNet convolutional neural net-
works we have implemented in this project. The models that
we have transferred the weights from were both trained on
the Imagenet (Krizhevsky, Sutskever, and Hinton 2012) data
set which contains over 1000 classes of images making it a
very general data set of images that we can then fine tune to
classify the images of the marsh species.

EfficientNet
Convolutional Neural Networks(CNN) were developed due
to the study of the brain’s visual cortex, and have been

1http://unfail.ccec.unf.edu/marshdata.html

Figure 2: Examples of the different classes contained within
the data set. Each snippet is randomly selected from the one
meter-square images taken at the GTMNERR and labeled
by a trained expert. All snippets are a size of 33 x 33.

around since the 1980s (Géron 2019). Convolutional layers
are used to identify small patterns, with successive layers
working to piece together larger and larger patterns. This
approach works very well with images, as they often follow
such hierarchical patterns (Géron 2019). Much research has
been done in improving the performance of CNNs from the
1980s with LeNet (LeCun et al. 1989) to contemporary re-
search such as EfficientNet.

EfficientNet which was proposed by Tan and Le (Tan and
Le 2019) is a convolutional neural network that uniformly
scales the dimensions of depth, width, and resolution using a
compound coefficient. In their research they show that their
approach is effective in scaling up MobileNets and ResNets
to increase the accuracy. They then used their approach to
design a baseline network and used their scaling approach
to create the family of EfficientNet model. They show that
this family of models is capable of achieving better accuracy
and are more efficient than previosuly outlined ConvNets.
The current list of available EfficientNet models included
the models of efficientnet-b0 to efficientnet-b7 and there has
been work done to add more models to the available list (Tan
and Le 2021). They show that their EfficientNet-B7 model
is over 8 times smaller and over 6 times faster than the best
existing ConvNet on the ImageNet data set at the publishing
of their article (Tan and Le 2019). We hope to compare the
performance of two EfficientNet family models against the
performance of a Vision Transformer.

Vision Transformer
The transformer architecture has more commonly been used
in Natural Language Processing (NLP)(Vaswani et al. 2017).
Transformers have replaced the recurrent neural network



(RNN) architectures that were used in NLP prior to the
development of the transformer architecture. Transformers
utilize a self-attention mechanism to form relationships be-
tween words in a sequence of text. Efforts to utilize trans-
formers and their self-attention mechanism with computer
vision tasks resulted in the development of the ViT. ViTs,
outlined in (Dosovitskiy et al. 2020), are a newer deep learn-
ing architecture that utilizes the benefits of the transformer
architecture for computing vision tasks. ViTs have been
shown to provide comparative performance to CNNs, some-
times even outperforming them (Dosovitskiy et al. 2020).
The high-level overview of the ViT architecture is presented
in Figure 3. The challenge in using Transformers with im-
age data is that text is one-dimensional while image data is
often either 2 or 3 dimensional. In order to get image data
in a format that can be use with the transformer architec-
ture, ViTs begin by splitting an input image up into patches.
After the patches have been created, they are linearly flat-
tened, resulting in each patch being one-dimensional. Each
patch has its original position embedded with the first patch
also having an extra learnable class embedding attached to it.
These patches are then fed to a transformer encoder before
being processed by a Multi-Layer Perceptron for the result-
ing classification output. Using self-attention, ViTs have the
ability to form relationships between the patches in images.
Utilizing this self-attention mechanism, ViTs have shown to
achieve high levels of accuracy on large general data sets
such as ImageNet (Dosovitskiy et al. 2020). We aim to deter-
mine if the use of a ViT over EfficientNet for marsh species
identification will result in higher levels of performance re-
garding accuracy. We also want to explore the possible im-
plications to the time to train a ViT over EfficientNet.

Experimentation
All experimentation was carried out using a sys-
tem with a Intel i7-9700k, Nvidia RTX 2070 Su-
per with 8GB of VRAM, and 16 GB of system
RAM. Each model of ViT (source code available at:
https://github.com/lukemelas/PyTorch-Pretrained-ViT.git),
EfficientNet-b0 and EfficientNet-b7 (source code available
at: https://github.com/lukemelas/EfficientNet-PyTorch.git)
were trained using 5 fold cross validation. Each algorithm
used a learning rate of 0.001 and Stochastic Gradient
Descent(SGD) with momentum of 0.9. The code used asks
for the image size and number of classes when each model
is initialized. By passing these two parameters, the model
output layer is modified accordingly. Following training, the
trained models were then evaluated on the respective test
set for each of the 5 folds to obtain the respective accuracy,
weighted F1, and the AUROC for each class. AUROC
curves, or Receiving Operator Characteristic Area Under
the Curve plots, are a means to compare the ability of each
model to differentiate between the classes. In situations
of multi-class classification, the AUROC is calculated per
class on a one-vs-rest basis. The greater the area under
the curve (AUROC) for a class the better the model is
at distinguishing that particular class to the rest of the
classes. We can compare the accuracy, weighted F1, and the
AUROCs to more intimately compare both the ViT and the

Figure 3: High level overview of the ViT architecture. Im-
ages are patched into smaller individual patches. The smaller
patches are then linearly flattened and fed to a transformer
encoder. The output of the transformer encoder is then fed
to an MLP to obtain the classification result. In the case that
image resolution is not divisible by the number of patches,
the image is resized accordingly.

EfficientNet models against each other on marsh species
identification. We also examined the time it took to train
each of the implemented models to determine the possible
implications that the different model architectures can have
on training time.

Results
Table 1 shows the results for the difference between the aver-
age class AUROC for each of the models used in this study.
The AUROC can help us determine how well each model
is at distinguishing between each class by plotting the True
Positive Rate (TPR) against the False Positive Rate (FPR).
By recording the AUROC across 5-folds of the dataset for
both EfficientNet-b0 and EfficientNet-b7, we can determine
which EfficientNet is performing better in our particular
classification task. We can then determine which Efficient-
Net model is performing more optimally and compare this
model to ViT. On average, EfficientNet-b0 provided higher



Figure 4: Saliency maps for ViT (top), EfficientNet-b0 (middle), and EfficientNet-b7 (bottom). Saliency maps show which
regions of an image are helping to guide the network’s decision on the classification of the image.

AUROC results than EfficientNet-b7 on classes a, m, j and
p. EfficientNet-b7 did outperform EfficientNet-b0 regarding
the AUROC for classes b and s. When comparing the AU-
ROC for the slightly better performing EfficientNet-b0 and
a ViT, we see that the ViT outperformed EfficientNet-b0 on
all 6 classes contained within the data set.

Table 1: Average Area Under the Curve
Class EfficientNet-b0 EfficientNet-b7 ViT

Avicennia (a) 0.926 0.916 0.944
Bare/Non-Vegetated (b) 0.912 0.922 0.948

Batis Maritima (m) 0.962 0.954 0.976
Spartina (s) 0.862 0.874 0.920
Juncus (j) 0.840 0.780 0.896

Sarcoconia (p) 0.866 0.856 0.930

Table 2: Average Accuracy and Seconds per Epoch
Metric EfficientNet-b0 EfficientNet-b7 ViT

Accuracy 0.818 0.810 0.840
Weighted F1 0.808 0.792 0.830

Seconds/Epoch 59.17 110.20 65.46

Table 2 shows the results for the accuracy on the test set
for each of the models on all five of the cross validation
folds. On average, ViT outperformed both the EfficientNet
variants in Accuracy and Weighted F1. Table 3 shows the
p-values calculated using the Two-tailed T-Test function de-
fined in Microsoft Excel. When comparing the metric re-
sults for the better performing EfficientNet-b0 and ViT, the
p-values show that the increases to these metrics were signif-
icant. While EfficientNet-b0 did not outperform ViT, it did

Table 3: ViT vs. EfficientNet-b0 p-values
Metric p-value

Accuracy 0.00039
Weighted F1 0.00039

AUROC Avicennia (a) 0.00084
AUROC Bare/Non-Vegetated (b) 0.00012

AUROC Batis Maritima (m) 0.02490
AUROC Spartina (s) 0.00010
AUROC Juncus (j) 0.00015

AUROC Sarcoconia (p) 0.00023

provide the fastest time to train on average. EfficientNet-b7
took the longest time to train most likely due to the increased
size of the network. This increased time to train did not re-
sult in a better accuracy or better AUROC.

To help understand how each model was making its classi-
fication decision, we also visualized saliency maps. Saliency
maps help show which regions of an image are aiding in the
network’s classification decision. Figure 4 shows examples
of saliency maps for each model. By examining the saliency
maps for each model we can gain insight into how each
model is performing. The saliency maps for ViT show in-
teresting behavior with some patches having high levels of
activation while the other patches around it have reduced
activation. We believe this to show that the ViT is lending
more attention to particular patches when making its clas-
sification. The saliency maps for both EfficientNet-b0 and
EfficientNet-b7 appear to be similar with saliency maps for
EfficientNet-b0 appearing to show more widespread activa-
tion in some images.



Conclusion and Future Work
After running experimentation and reviewing the results, we
can conclude that the Vision Transformer outperformed both
of the EfficientNet models we trained on the GTMNERR
marsh species data set. Although it provided slightly higher
training times than the smaller EfficientNet-b0, it did of-
fer a significant change to the average class AUROCs and
to the average accuracy. This comparative study shows that
the use of a vision transformer for the purpose of marsh
species identification could in fact provide better overall ac-
curacy to researchers looking to automate this process. Due
to hardware constraints, more extreme adjustments to the
ViT model architecture was not feasible and is a significant
limitation of this study. Future research in this area should
utilize high performance computing solutions to explore the
impact of different image transforms or the increasing of the
input image resolution or ViT patch size on the model per-
formance.
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