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Abstract
Tropical cyclones impact estuaries via a variety of mechanisms including storm surge, flooding from precipitation, high 
winds, and strong wave action. Prior studies have documented disturbances caused by tropical cyclones, including prolonged 
periods of depressed salinity from high freshwater discharge and increased or decreased dissolved oxygen concentrations 
from increased loading of organic matter and/or nutrients. However, most studies of disturbance and recovery in estuaries 
have been limited to one or a few locations or storm events, limiting generalizations about tropical cyclone impacts and 
characteristic patterns of ecosystem response and recovery. We analyzed responses to 59 tropical cyclones across 19 estuar-
ies in the eastern USA by applying a new method for detecting disturbance and recovery to long-term and high-frequency 
measurements of salinity and dissolved oxygen from NOAA’s National Estuarine Research Reserve System. We quantified 
disturbance occurrence, timing, recovery time, and severity. Salinity disturbances generally started earlier and lasted longer 
than dissolved oxygen disturbances. Estuaries usually recovered within days, but some disturbances lasted weeks or months. 
Recovery time was positively correlated with disturbance severity for both variables. Tropical cyclone properties (espe-
cially precipitation) and location characteristics were both related to disturbance characteristics. Our findings demonstrate 
the power of high-frequency, long-term, and cross-system data, when combined with appropriate statistical methods, for 
analyzing hurricanes across many estuaries to quantify disturbances. Estuaries are resilient to hurricanes for the variables 
and time periods considered. However, persistent impacts can potentially damage resources provided by estuaries, eroding 
future resilience if hurricanes become more frequent and severe.
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Introduction

Tropical cyclones (TCs) are large and severe meteorological 
events that have substantial impacts on coastal populations, 
communities, and ecosystems, as well as social-ecological 
systems (Parker et al. 2013; Crosswell et al. 2014; Danielson 
et al. 2017; Congdon et al. 2019; Armitage et al. 2020). Given 

these impacts as well as the observed and projected increase 
in severity and geographic extent of TCs with climate changes 
(Knutson et al. 2010; Sobel et al. 2016; Balaguru et al. 2022), 
there have been calls for systematic and coordinated study 
(Bortone 2006; Pruitt et al. 2019; Hogan et al. 2020). For 
estuarine ecosystems, understanding the effects of tropical 
cyclones is complicated by the variety and complexity of 
alterations in physical, chemical, and biological processes. 
Detailed studies of tropical cyclones have documented 
impacts for specific estuaries and storms (e.g., Paerl et al. 
2001; Wetz and Paerl 2008; Patrick et al. 2020), but few 
studies have evaluated numerous storms and sites. One 
notable exception is Sanger et al. (2002), who examined high 
frequency water quality measurements from 18 estuaries in 
the eastern USA impacted by 24 TCs from 1995 to 2000. 
They found that more intense storms were associated with 
stronger water temperature cooling prior to storm passage, 
and that most other water quality changes were short-lasting, 
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though salinity declines occasionally persisted for months. 
More recently, Patrick et al. (2022) synthesized multiple 
response variables across multiple storms and sites. They 
determined that the relative resistance to disturbance was 
inversely related to recovery and demonstrated the potential 
for testing tropical cyclone impacts across many variables 
and storms to arrive at generalizations.

Quantifying the degree of disturbance and period of 
recovery is crucial to developing a generalized, and ideally 
predictive, understanding of tropical cyclone impacts on 
estuaries (Verdonschot et al. 2013). Such an understanding 
could inform management actions; for example, knowing the 
likely duration and severity of low salinity after TCs could 
be used with metapopulation modeling (Munroe et al. 2013) 
to choose locations for oyster restoration. Identifying distur-
bance and recovery requires separating event-driven changes 
from natural variability (Walter et al. 2022). However, doing 
so for tropical cyclone impacts on estuaries is challenging, 
because estuaries are inherently variable through time and 
space. At a given location within an estuary, what consti-
tutes “normal” values of a variable is determined by inter-
acting processes such as tidal, diel, and seasonal cycles, and 
weather, as well as local characteristics such hydrologic 
position, depth, and watershed land use (Tomasko et al. 
2006; Wetz and Yoskowitz 2013; Perales-Valdivia et al. 
2018; Scanes et al. 2020). The influence of these and other 
factors changes within and among estuaries (Sanger et al. 
2002). As such, establishing baseline conditions requires 
either a strong understanding of what processes dominate 
at a given location or extensive prior data.

Despite the many difficulties that limit cross-system and 
cross-storm examination of disturbances, the data to do so 
are increasingly available for many estuaries and ecosystem 
variables (Gaiser et al. 2020; Mills et al. 2008). Long-term 
monitoring data have provided the opportunity to synthesize 
ecosystem responses across multiple storms. For example, 
in Apalachicola Bay, Florida, USA, Edmiston et al. (2008) 
also used a two-decade record of TC impacts to document 
contrasting or absent impacts to water depth, water qual-
ity, coastal erosion, sea turtle nest loss, and SAV and oyster 
populations, depending on storm size, speed, severity, land-
fall, surge height, and precipitation. Paerl et al. (2018) used 
two decades of monitoring data to distinguish how different 
storm types (wet vs. dry, windy vs. calm) led to different 
biogeochemical and phytoplankton responses in the Neuse 
River Estuary and Pamlico Sound in North Carolina, USA.

In addition to long-term data, developments in sensor 
technology and remote sensing platforms have made it pos-
sible to measure some variables at high frequency. In aquatic 
ecosystems, in situ sensors can measure temperature, salin-
ity, turbidity, pH, dissolved oxygen, phytoplankton pigment 
fluorescence, and nutrient concentrations on the scale of 
seconds to minutes (Glasgow et al. 2004; Fries et al. 2007). 

Satellite remote sensing can be used to infer shellfish and 
submerged aquatic vegetation (SAV) coverage (Nieuwhof 
et al. 2015; Wang et al. 2007), as well as the distribution of 
turbid waters (Doxaran et al. 2006) and phytoplankton (Jiang 
et al 2020). For some locations, high-frequency, long-term 
measurements have been collected by monitoring programs 
like NOAA’s National Estuarine Research Reserve System 
(NERRS; https:// coast. noaa. gov/ nerrs/). Data from this pro-
gram as well as extensive weather data related to tropical 
cyclones are openly available.

While having high frequency and long-term data is a 
helpful first step to understanding patterns and controls 
of disturbances, appropriate statistical approaches are also 
required for generating insights from those data. Methods 
to objectively quantify and compare disturbance timing, 
disturbance magnitude, and time to recovery are required. 
For example, Patrick et al. (2022) developed response ratios 
for variables and scaled them by storm features (maximum 
winds and precipitation) to enable comparison of distur-
bance magnitudes. Systematic approaches coupled with 
sufficient data offer the potential to overcome the inherent 
spatial and temporal variability and heterogenous responses 
to tropical cyclones that have limited comprehensive study 
of the patterns and controls on disturbance and recovery 
(Pruitt et al. 2019; Hogan et al. 2020; Patrick et al. 2022).

Here, we present a synthesis of disturbance and recovery 
measurements for tropical cyclones in estuaries monitored 
by the National Estuarine Reserve System (NERRS) of the 
U.S. National Oceanographic and Atmospheric Administra-
tion (NOAA) by taking advantage of their long-term data 
and the known tracks of many storms. We apply a new dis-
turbance detection method designed to quantify the timing 
and magnitude of the disturbance and the length of recovery 
in high frequency data (Walter et al. 2022). We apply this 
method to continuous measures of salinity and dissolved 
oxygen where long-term observations provide a rich base-
line for comparing “normal” variability to storm conditions. 
Based on hundreds of station-tropical cyclone-variable time 
series, we ask the following: (1) What are the characteristics 
(occurrence, timing, duration, severity) of tropical cyclone 
disturbances in estuaries? (2) What storm and site properties 
are associated with changes in disturbance characteristics? 
and (3) How are estuary resilience and resistance to tropical 
cyclone disturbances related?

Methods

Study Sites and Data  High-frequency time series of water 
quality parameters from the NOAA’s NERRS program were 
analyzed to identify disturbance events associated with 
tropical storms. NERRS is composed of 29 US estuaries, 
with each site containing several monitoring stations that 

https://coast.noaa.gov/nerrs/
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collect water temperature, chemistry, nutrient, and pigment 
data along with meteorology. For this study, we focus on 
measures of salinity and dissolved oxygen percent saturation 
(DO % sat) collected by automated sensors at high frequency 
(15 min since 2007, 30 min prior) at 19 Atlantic NERRS 
sites from 2000 to 2018 (Fig. 1; Appendix S1, Table S1). 
Salinity is a critical determinant of habitat suitability for 
aquatic organisms, varies across most NERRS sites from 
coastal to inland stations, and is controlled entirely by 
physical processes. DO % sat is also a critical determinant 
of habitat suitability. DO % sat (as opposed to concentra-
tion) accounts for the effect of water temperature on oxygen 
solubility and is driven by biological (i.e., primary produc-
tion and respiration) and physical-chemical processes (e.g., 
atmospheric exchange, chemical oxidation reactions). Data 
were obtained from the NERRS Central Data Management 
Office’s Advanced Query System (http:// www. nerrs data. 
org), and all measurements with data quality flags were 
removed prior to analysis.

Storm Identification We considered tropical cyclones 
(TCs) that potentially impacted salinity and oxygen at each 
NERRS. A two-step process was used to identify TCs and 
sites for analysis to limit the computationally intensive 

analyses to cases where TC disturbances were plausible. 
First, TCs that passed within 250 km of a specific NERRS 
site were identified using storm tracks from the hurricane-
exposure and hurricaneexposuredata R packages (Anderson 
et al. 2020a, b). Second, for each identified TC, potential 
impacts were determined by visually inspecting plots of 
salinity and DO % saturation from 30 days prior to 60 days 
after the date the TC passed closest to the NERRS site. If 
any variable at any station within a NERRS site appeared 
to be affected by the TC (defined as an increase or decrease 
in the mean or variability relative to the 30 day pre-TC pas-
sage period), all stations and parameters for that site and 
TC were classified as potentially impacted and included 
in further analyses. While the second step is subjective, 
including some TCs with minor impacts and possibly miss-
ing others with subtle impacts, we aimed to be inclusive in 
classifying potentially impacted sites/storms to allow the 
disturbance detection algorithm to quantitatively distinguish 
events that fell outside the range of historic variability (see 
below). Alternative methods for identifying TCs that poten-
tially impacted water quality at sites were explored, such as 
thresholds in meteorological variables (high wind speed, 
heavy precipitation, drops in barometric pressure). How-
ever, the many potential mechanisms by which estuarine 

Fig. 1  Location and site codes 
of NERRS sites analyzed for 
tropical cyclone impacts. Point 
size indicates the number of 
tropical cyclones analyzed
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salinity and DO can be impacted by TCs (e.g., storm surge, 
wind driven waves, local precipitation, increased discharge 
from the watershed) as well as frequent missing meteoro-
logical data during TCs precluded the use of such a method. 
Ultimately, tropical cyclone–associated disturbances were 
not observed for over 60% of the 955 station-TC-variable 
combinations analyzed (see “Results”). Non-detection was 
expected given the minor impacts of weaker hurricanes and 
the expected decline in realized TC impacts with distance 
from the storm track. Our method identified TC impacts 
on salinity and dissolved oxygen in 38% of the cases, and 
these detections were not limited to only events that caused 
widespread and severe disturbances.

Disturbance Detection After potentially impacted NERRS 
sites for each TC were determined, individual stations within 
each site with sufficient data were identified for disturbance 
detection analysis. Station-TC-variable combinations with 
more than 25% total missing data or a 5-day or longer gap 
in measurements during the period from 14 days prior to 
60 days after the TC was closest were excluded from further 
analysis, as were combinations with fewer than 8 other years 

of data to use as reference data (see below) during the same 
date range meeting the same gap length and total missing 
data requirements.

We applied a recently developed disturbance detection 
method designed for use with high frequency data (Walter 
et al. 2022). The method is implemented in an R package 
available on GitHub (https:// github. com/ jonat han- walter/ 
distu rbhf). It compares the distribution of a variable for 
rolling windows of the time series within a test period to a 
reference period using the empirical cumulative distribution 
function (ECDF). The analysis consists of three steps. First, 
the difference statistic time series dw(t) is calculated for each 
window within the test period:

where xtest,W(t) are the variable values within a rolling win-
dow of width W centered at time t within the test period 
(Fig. 2A), xref,W(t) are the variable values in a reference 
period, N is the number of intervals at which to evaluate 
the EDCFs (here we use 1000) over the range of observed 

dw(t) =

N∑

i=1

||
|
ECDF

(
xtest,W (t)

)
− ECDF(xref ,W (t)

|
|
|i
× dx

Fig. 2  Illustration of the distur-
bance detection algorithm. A 
Observations of salinity before 
and after Hurricane Hanna 
impacted the Wells Reserve 
(Maine, USA) in 2008. Shaded 
periods are example 3-day test 
periods before (blue) and after 
(red) tropical cyclone pas-
sage. B Empirical cumulative 
distributions (ECDF) for the 
before-impact example test 
period (blue) and correspond-
ing reference periods in other 
years (black). The area of the 
shaded region corresponds to 
dw, the distribution difference 
statistic. C ECDFs for the after-
impact example test period (red) 
and corresponding reference 
periods in other years (black). D 
Time series of the normalized 
(z-score) distribution difference 
test statistic

https://github.com/jonathan-walter/disturbhf
https://github.com/jonathan-walter/disturbhf
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values in the test and reference windows, and dx is the width 
of those intervals (equal to (xmax − xmin) / N; Fig. 2B, C). xref 
can be defined to be either fixed (all values within the refer-
ence period are used) or adaptive, where rolling windows 
of a specified width within the reference period are used to 
account for seasonal trends. As tropical cyclones occur from 
summer into late fall when seasonal changes in water quality 
might be expected, we use an adaptive reference period so 
rolling windows within the test period are compared to win-
dows centered at the same day of year in the reference years.

In the second step, the dw time series is rescaled based on 
the variability observed in the reference period. This is done 
by calculating dw,ref as above, but xtest,W(t) is instead defined 
by rolling windows of observations within the reference 
period. The mean (µdw,ref) and standard deviation (σdw,ref) of 
dw,ref are used to rescale dw(t) as a z-score (Fig. 2D):

Finally, user-specified thresholds in z(t) that define dis-
turbance (threshdist) and recovery (threshrecov) are applied to 
identify the timing of disturbance events (initiation and con-
clusion). Short disturbances and recoveries can optionally 
be combined or removed using minimum disturbance and 
recovery lengths. We used a test window width of 3 days and 
a reference window width of 6 days as a balance between the 
ability to detect shorter disturbances vs. power to accurately 
characterize variable distributions based on initial explora-
tion of cases with obvious TC impacts. We also required 
that disturbances and recoveries last for at least 24 h and set 
threshrecov = 0.5 × threshdist. Based on a disturbance threshold 
sensitivity analysis (Appendix S1, Fig. S1), we used thresh-
dist = 2. Choice of threshdist is subjective; our goal in using a 
single value was to allow for comparison across many TC-
station-variable combinations that limited disturbances to 
those that were likely caused by storms. In studies focused 
on a smaller number of disturbances, site- or storm-specific 
values of threshdist and test and reference window widths 
could be used. Lower threshdist values will lead to more dis-
turbances detected and generally longer durations (and vice 
versa). Narrower window widths are more likely to detect 
short disturbances but can lead to false detections due to 
low sample size.

The detection algorithm was iterated through the roll-
ing window time steps from 14 days before TC passage 
to 60 days after. The shorter analysis window compared 
to the Storm Identification window was chosen to limit 
these computationally intensive calculations to only time 
periods when a disturbance was potentially caused by TC 
impacts; additionally, the longer pre-TC window was not 
needed because a minimum 8 years of data were used for 
the reference window. If a disturbance was detected in the 
initial analysis but no recovery occurred within 60 days, the 

z(t) =
(
dw(t) − �dw,ref

)
∕
(
�dw,ref

)

post-TC window was extended for 60 additional days until 
a recovery was detected.

Disturbance Event Characteristics and Drivers After setting 
the algorithm parameters and identifying disturbance events, 
we quantified disturbance characteristics and explored 
potential relationships with station and TC variables. Distur-
bance event characteristics included disturbance occurrence, 
timing relative to when the center of the TC was closest, 
length of time between disturbance initiation and recovery, 
and severity (peak z(t) during the disturbance). Disturbance 
events were limited to first occurring disturbances starting 
from 3 days before to 30 days after each TC was closest to 
each NERRS site. Thirty days after TC passage was chosen 
to attempt to capture all disturbances initiated by a storm, 
accounting for potential disturbance delays such as hydro-
logic lags and biological feedbacks. Following disturbance 
and recovery detection, mean salinity and dissolved oxy-
gen during the disturbance were calculated and compared 
to means during the same date range in all other years of 
available data.

Potentially explanatory station variables included mean 
salinity and depth as proxies for relative location within the 
estuary (oceanic vs. inland), mean tidal range as a proxy 
for tidal influence, and standard deviation of salinity as a 
proxy for variability in the contribution of upstream vs. 
ocean water sources. Tropical cyclone traits included clos-
est TC distance to the NERRS site, maximum wind gust 
speed, duration of wind gusts over 20 m/s, total TC pre-
cipitation, and storm surge height. TC distance and winds 
were determined from the hurricaneexposure R package 
(Anderson et al. 2020a); winds were from the population-
weighted center of the closest county. This source of wind 
data was chosen because it provides consistently modeled 
wind speeds across all TCs and locations in this study; 
while actual measurements at each location would be pref-
erable, not all stations had meteorological data and often 
data were lost during TC impacts. Total TC precipitation 
was obtained from the PRISM reanalysis product (PRISM 
Climate Group 2021); daily precipitation totals from 3 days 
before to 7 days after the TC passed closest to the NERRS 
site were summed. Storm surge height was calculated from 
depth observations at each station as the difference between 
the maximum depth observed from 3 days before to 7 days 
after TC passage and the maximum depth from the preced-
ing 2 weeks. While imperfect due to not accounting for 
whether storm surge occurred at high or low tide, or for 
longer period tidal cycles, the storm surge metric provides 
an indicator of how high water got at each location within 
an estuary. Total precipitation was square-root transformed, 
and peak severity was log transformed prior to regressions 
to increase normality. Relationships between disturbance 
characteristics (occurrence, timing, length, and severity) and 
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potential driver variables (TC precipitation, station mean 
tidal range, etc.) were assessed using multiple logistic and 
multiple linear regression; separate models were computed 
for each combination of disturbance characteristic (occur-
rence, timing, length, or severity) and ecosystem variable 
(salinity or dissolved oxygen) and the best model for each 
disturbance characteristic — ecosystem variable combina-
tion was determined using AIC and stepwise model selection 
(Venables and Ripley 2002).

Results

Disturbance Examples The disturbance detection method 
identified different types and durations of anomalous 
salinity and oxygen conditions in the periods near TC pas-
sage. For example, Hurricane Florence in 2018 caused 
significant declines in salinity at North Inlet-Winyah Bay 
NERR’s Debidue Creek station from over 35 to 1–2 psu, 
and it took 39 days to return to normal values (Fig. 3A; 

Fig. 3  Example time series showing hurricane impacts and perfor-
mance of the normalized distribution difference statistic. Black lines 
are observations of salinity (A, B) and dissolved oxygen percent sat-
uration (C, D). Blue lines are the normalized distribution difference 

statistic for 3-day wide rolling windows. Red shaded areas represent 
disturbances identified with z-score a disturbance threshold of 2 and 
recovery threshold of 1. Note different x- and y-axis scales
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Table 1). At Jacques Cousteau NERR, there was a sharp but 
short (~ 2 days) increase in salinity from 15–20 to 29 psu in 
response to storm surge from Hurricane Sandy (2012), after 
which salinity was lower than before the storm but still within 
the range of normal variability (Fig. 3B). The distribution 
difference statistic also increased in response to storms that 
impacted variability more strongly than mean values; at Great 
Bay NERR’s Squamscott River station, Hurricane Hanna in 
2008 significantly decreased the amplitude of dissolved oxy-
gen oscillations but the mean remained near 85% saturation 
(Fig. 3C). The normalized distribution difference statistic 
(z-score) increased to ~ 1.4 over this period, but not enough 
to trigger a disturbance event for a threshold of 2. A more 
severe disturbance in dissolved oxygen occurred at Rookery 
Bay NERR’s Lower Henderson Creek station, where Hur-
ricane Irma caused a crash in dissolved oxygen to near 0% 
saturation (Fig. 3D). The z-score for this disturbance peaked 
at nearly 8 standard deviations above the reference period 
mean, indicating a highly anomalous event for the location.

Disturbance Event Characteristics A wide range of distur-
bance timing, length, and severities were observed. Distur-
bances were detected for 40% of salinity cases and 37% of 

dissolved oxygen cases. Over 50% of detected disturbances 
began within 2.5 days (salinity) and 5.1 days (dissolved oxy-
gen) of when the eye of a tropical cyclone passed closest to 
each NERRS site (Fig. 4). Initiation of disturbances peaked 
for salinity from 0.5 to 1.5 days after TC passage, with the 
cluster of most frequently observed times from 3 days before 
to 4.5 days after (Fig. 4A). For dissolved oxygen, distur-
bances most frequently began from 2.5 to 3.5 days after TC 
passage; the cluster of most frequent times peaked much 
lower and was wider relative to salinity (Fig. 4B).

The majority of disturbances lasted less than a week 
(median of 6.3 days for salinity, 4.6 days for DO % sat; 
Fig. 5), but the distribution of disturbance lengths had a 
long tail, with disturbances > 50 days seen for both DO% 
sat and salinity (Fig. 5A, B). Salinity disturbances between 
1 and 8 days accounted for 61% of salinity disturbances, 
with a large drop in the number of observed disturbances 
longer than 14 days (Fig. 5A). The cluster of most com-
mon disturbance lengths for dissolved oxygen was shifted to 
slightly lower values; the most common disturbance lengths 
were 1–6 days, and a drop in observed disturbance lengths 
occurred after 12 days (Fig. 5B). Of the 24 disturbances that 
lasted longer than 30 days, 20 were salinity disturbances 

Table 1  Tropical cyclone and station characteristics (calculated from all available years) of disturbance events lasting longer than 30 days

NERRS Reserve Station Storm Var. Duration
(days)

Precip
(mm)

Depth
(m)

Mean Salinity
(psu)

Ashepoo Combahee Edisto Basin Mosquito Creek Andrea-2013 Sal 98.4 72.4 4 18.2
Chesapeake Bay Virginia Taskinas Creek Michael-2018 Sal 71.1 91.5 1.6 10.6
Guana Tolomato Mantanzas San Sebastian Irma-2017 Sal 58.9 266.8 5.1 33.8
Weeks Bay Middle Bay Ida-2009 DO 58.6 89.2 1.4 9.5
NorthInlet-Winyah Bay Thousand Acre Florence-2018 Sal 58.4 316.6 2.5 8
Weeks Bay Weeks Bay Lee-2011 DO 51.5 230.6 1.2 10
NorthInlet-Winyah Bay Clambank Florence-2018 Sal 50 316.6 2 32.7
Ashepoo Combahee Edisto Basin Fishing Creek Andrea-2013 Sal 46.9 72.4 2.7 9.4
Delaware Blackbird Landing Irene-2011 Sal 43.3 212.4 1.7 1.9
Weeks Bay Magnolia River Bill-2003 Sal 42.6 262.2 1.8 9.2
Weeks Bay Middle Bay Bill-2003 Sal 40.6 262.2 1.4 9.5
Great Bay Lamprey River Hanna-2008 Sal 39.4 146.8 2.2 12.1
Rookery Bay Middle Blackwater River Irma-2017 DO 38.8 255.5 1 30.6
NorthInlet-Winyah Bay Debidue Creek Florence-2018 Sal 38.7 316.6 2.5 32.1
North Carolina Zeke's Basin Florence-2018 Sal 37.7 680.2 0.7 22
Great Bay Lamprey River Charley-2004 DO 35.3 131 2.2 12.1
Guana Tolomato Mantanzas Pine Island Irma-2017 Sal 33.5 266.8 4.2 28.5
Sapelo Island Cabretta Creek Tammy-2005 Sal 32.5 307.2 3.1 31.8
Chesapeake Bay Virginia Claybank Isabel-2003 Sal 31.8 117.3 1.2 16.1
Chesapeake Bay Virginia Goodwin Islands Irene-2011 Sal 31.2 258.6 1 19.6
Delaware Scotton Landing Irene-2011 Sal 30.7 212.4 1.7 10.8
Jacques Cousteau Chestnut Neck Irene-2011 Sal 30.4 157.7 2.4 14.9
Chesapeake Bay Virginia Taskinas Creek Isabel-2003 Sal 30.3 117.3 1.6 10.6
Apalachicola Bay Dry Bar Dennis-2005 Sal 30.1 5.7 1.8 21.8
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(max = 98 days) and 4 were dissolved oxygen disturbances 
(max = 59 days; Table 1).

TC disturbances tended to decreased salinity and DO % 
values, though the relative proportion differed by variable. 
Only 8% of salinity disturbances had a higher mean value 
during the disturbance than in reference years, while 92% 
had a lower mean (Fig. 6). For dissolved oxygen, 37% had 
a higher mean value during the disturbance and 63% were 
lower. Only 16.5% of all the dissolved oxygen disturbances 
had a mean DO % value greater than 100% (Fig. 6).

There was a wide range in the peak severity value of 
each disturbance, with peak severity z-scores between 2 
and 5 being most common (80% of cases for salinity, 84% 
for dissolved oxygen) and several values between 5 and 15 
occurring for each variable (Fig. 7). There was a significant, 
positive relationship between log-transformed peak severity 
and log-transformed disturbance length for both salinity and 
DO % saturation (Fig. 7), with very similar correlation coef-
ficients (r = 0.51 and 0.62 for salinity and oxygen, respec-
tively; p < 0.001 for both variables).

Fig. 4  Histograms (A: salinity, B: dissolved oxygen) and empirical cumulative distribution curves (C) showing the timing of disturbance start 
relative to when the tropical cyclone was closest to each NERRS site

Fig. 5  Histograms (A:salinity, B: dissolved oxygen) and empirical cumulative distribution curves (C) showing the length of time between distur-
bance initiation and recovery
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Fig. 6  Mean salinity (A) and dissolved oxygen (B) during TC-associated disturbances vs. during the same periods in all other years. The black 
line is the 1:1 line, indicating no difference between the means during the disturbance and reference periods

Fig. 7  Relationship between 
disturbance length and peak 
disturbance severity for salinity 
(A) and dissolved oxygen (B)
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Potential Disturbance Drivers At least one potential driver 
was identified for all disturbance event characteristics for 
both dissolved oxygen and salinity based on regression 
analysis (Table 2; model coefficients are in Tables S2–S9). 
Higher precipitation and mean salinity were associated with 
increased occurrence of salinity disturbances, while increases 
in tidal range were associated with lower salinity disturbance 
occurrence. For dissolved oxygen, TCs with higher precipita-
tion and stations with greater depths had more disturbances, 
while stations with larger tidal ranges had fewer distur-
bances. TCs with longer duration of wind gusts over 20 m/s 
were associated with later occurring salinity disturbances; 
increased precipitation led to earlier occurring salinity dis-
turbances. For dissolved oxygen disturbance timing, stations 
with higher salinity had later starting disturbances while TCs 
with more precipitation that passed closer to the NERSS site 
had earlier disturbances. Longer salinity disturbances were 
positively correlated with tidal range, depth, wind gust dura-
tion, and maximum wind speed, and negatively correlated 
with mean station salinity and storm surge height. Longer 
dissolved oxygen disturbances were positively correlated 
with TC precipitation and station salinity variability and 
negatively correlated with station mean salinity and TC 
wind gust duration. Several TC and station variables were 
positively and negatively related to peak severity for salinity 
disturbance (Table 2), while the only driver variable that had 
a significant relationship with peak disturbance severity for 
DO % sat was maximum storm surge height.>

The mean magnitudes of change associated with regres-
sion model variables can be readily estimated for ranges typ-
ically associated with TCs. For example, the simplest model 
is for the severity of DO % sat (Table S9) which changes 
as a z-score from 4.2 to 6.8 standard deviations above the 
mean for storm surges of 1 and 4 m, respectively. As a sec-
ond example, TC precipitation often falls in the range of 
100 to 300 mm (Table 1) but was as high as 680 mm in our 

data set. Assuming an estuary with a mean salinity of 20 
psu and a salinity standard deviation of 2 psu, the predicted 
mean length of a DO disturbance would be 1.6 days for a 
storm precipitation of 100 mm, 2 days for a precipitation of 
300 mm, and 2.4 days for a precipitation of 700 mm based 
on the model (Table S7).

Discussion

We identified and characterized tropical cyclone–associated 
disturbances across 19 estuaries and 59 different TCs in the 
eastern USA utilizing high-frequency, long-term data. The dis-
turbance detection method distinguished diverse disturbance 
types for two important ecosystem state variables (Fig. 3). In 
relation to our first question about disturbance characteristics, 
there was a wide range of disturbance timing, length, and 
severity (Figs. 4, 5, and 7). For our second question, both TC 
(especially precipitation) and site properties were associated 
with changes in disturbance characteristics (Table 2).

Across all TC-estuary combinations analyzed, dissolved 
oxygen saturation and salinity had a similar number of distur-
bances detected, though there were slightly more disturbances 
detected for salinity (40% vs. 37%). The lower number of dis-
turbances detected prior to TCs for salinity relative to DO % 
saturation (Fig. S1) suggests that disturbances in this variable 
are more closely tied to TC events, while additional mecha-
nisms beyond TCs are also important generators of anomalous 
DO % saturation values. The roughly 60% of cases without 
detected disturbances highlight the importance of consider-
ing instances when TCs both do and do not cause impacts to 
provide a complete understanding. The common case study 
approach may present a bias towards the perception that TCs 
usually have large impacts, when in fact often they do not, at 
least for the variables we consider in this study.

Table 2  Tropical cyclone (TC) and station variable–related distur-
bance characteristics: occurrence/non-occurrence, timing (days after 
TC passage), length (days), and peak severity (z-score). Drivers are 

separated into positive and negative significant relationships with 
each disturbance event characteristic

*Denotes 0.05 ≤ p ≤ 0.1; other variable p-values are < 0.05. See Tables S2–S9 in the Supplemental Information for coefficient values and stand-
ard errors

Disturbance Characteristic Salinity DO % saturation

Occurrence Positive: precipitation, mean(salinity)
Negative: tidal range

Positive: precipitation, depth, TC distance*
Negative: tidal range

Timing relative to TC Positive: wind gust duration*
Negative: precipitation

Positive: mean(salinity)
Negative: precipitation,
TC distance

Length Positive: tidal range, depth, wind gust duration, wind 
gust max

Negative: mean(salinity), storm surge height

Positive: precipitation, sd(salinity)*
Negative:

Peak Severity Positive: mean(salinity), precipitation
Negative: sd(salinity)

Positive: storm surge height
Negative:
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Both increases and decreases in salinity due to TCs have 
been widely documented, but our findings indicate that 
freshwater inputs from precipitation and increased river/
stream discharge are the dominant mechanism of salinity 
disturbance as opposed to storm surge (91% decreases vs. 
9% increases; Fig. 6). Biological processes that alter oxygen 
concentrations (i.e., respiration and primary production) are 
highly dynamic in time and related to several environmen-
tal drivers (e.g., nutrient loading, hydrology, temperature, 
solar radiation, and salinity; Caffrey et al. 2014; Murrell 
et al. 2018; Tassone and Bukaveckas 2019) and are a likely 
explanation for the observation of oxygen anomalies not 
associated with TCs (Fig. S1). Biological mechanisms could 
also explain the observed lag in dissolved oxygen distur-
bance initiation relative to salinity. Dissolved oxygen dis-
turbances were generally shorter in duration than salinity 
disturbances. While salinity and oxygen share many of the 
physical processes that promote recovery (e.g., stream and 
river discharge, tidal exchange), equilibration with atmos-
pheric oxygen concentrations, especially under vigorous 
mixing in estuaries, could explain the faster recovery of DO 
% sat. relative to salinity (Kremer et al. 2003). While we 
were unable to assess water column mixing in this study 
because almost all NERRS stations have only a single, near-
bottom sensor, future work looking at surface vs. bottom 
disturbances could provide important insights, especially 
for locations where increased freshwater inputs following 
TCs can lead to vertical salinity gradients and stratification 
(Mallin et al. 2002; Wetz and Yoskowitz 2013).

While short disturbances (< 7 days) were most frequent 
for both variables, longer disturbances were also common. 
Forty-seven percent of salinity disturbances lasted longer 
than 7 days, as did 28% of dissolved oxygen disturbances. 
For many organisms that inhabit estuaries, these distur-
bances likely represent prolonged periods of stress and 
require substantial movement for mobile species. Low oxy-
gen can cause fish and shellfish die-offs as documented for 
some hurricanes (Paerl et al. 1998, 2001; Parker et al. 2013). 
While many estuarine species tolerate relatively large salin-
ity ranges, extreme salinity fluctuations associated with TC 
disturbances may exceed tolerances (Du et al. 2021). Though 
rare, we also found several cases where disturbances per-
sisted for more than 30 days (Table 1). The extremely slow 
recovery rates for these events could arise from different 
mechanisms. Long duration, low salinity disturbances can 
result from high freshwater discharge (Paerl et al. 2001; Du 
et al. 2019). For dissolved oxygen disturbances, extreme 
loading of organic matter from the watershed into estuar-
ies can stimulate high respiration that draws down oxygen 
concentrations (Paerl et al. 2018). Alternatively, TCs can 
increase nutrient loading from internal or external sources, 
leading to algal blooms that increase oxygen concentrations 
(Shen et al. 2008). Though nutrient concentrations often 

decline quickly following hurricanes, recycling can maintain 
primary producer biomass (Peierls et al. 2003). The number 
of higher and lower dissolved oxygen concentrations during 
disturbances (39% and 61%, respectively; Fig. 5) suggests 
that both organic matter driven respiration inputs and nutri-
ent driven production can be important drivers of oxygen 
disturbances, but that oxygen consumption is usually greater 
than production during TC disturbances. Increased phyto-
plankton biomass, which has often been observed following 
TCs (Wetz and Paerl 2008; Herbeck et al. 2011; Phlips et al. 
2020), would be expected to cause DO saturation values over 
100% during severe blooms, but such cases were relatively 
rare in our data set. TCs can also cause declines in phyto-
plankton due to light limitation from high concentrations of 
suspended matter and organic carbon as well as losses from 
high flushing rates (Paerl et al. 1998; Malin et al. 2002; Paerl 
et al. 2018).

Our findings also offer insights into the overall time 
scales of TC disturbances at estuaries. NERR sites experi-
enced from 1 to 18 TCs over the period of record considered 
in this study (Table S1). As an intermediate example, Apala-
chicola Bay had 9 TCs from 2000 to 2018. Assuming median 
disturbance lengths for each storm, this amounts to 57 and 
41 days respectively of extreme conditions (greater than two 
standard deviations departure from means) for salinity and 
oxygen, respectively. These disturbance days are less than 
1% of the 19-year record. Even if some rare, long-duration 
disturbances also occurred, this simple calculation indicates 
estuaries are only impacted by TCs a small amount of the 
time in a cumulative sense. However, disturbances in salinity 
and dissolved oxygen may influence other processes (e.g., 
reproduction of longer-lived organisms, slow biogeochemi-
cal processes) that have lasting impacts. Thus, continued 
study of storm impacts is warranted, especially interactions 
that might ramify from short-term changes in easily meas-
ured physical-chemical variables considered in this study, 
such as salinity, dissolved oxygen, and turbidity impacts on 
benthic organisms, SAV, and fish populations (Paerl et al. 
1998; Mallin et al. 1999, 2002; Carlson et al. 2010). The 
topic gains significance if TCs increase in severity and/or 
geographic range with climate change as projected (Knutson 
et al. 2010; Sobel et al. 2016; Balaguru et al. 2022).

For our third question on the relationship between 
resilience and resistance, we found a positive relationship 
between disturbance length and disturbance severity. These 
two disturbance characteristics quantify metrics of ecosys-
tem stability and recovery; resistance and resilience have 
taken several definitions and received considerable atten-
tion in ecology and other fields. Using the definitions of 
Pimm (1984), disturbance length is inversely related to 
resilience (longer disturbance lengths correspond to lower 
resilience) and quantifies the ability and speed of a system 
to recover after a perturbation, while disturbance severity 
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is inversely related to ecosystem resistance (higher severity 
corresponding to low resistance) and measures a system's 
ability to oppose change. In an analysis of coastal ecosys-
tem response to Hurricane Harvey in 2017 using similar  
definitions, Patrick et al. (2020) found a negative relation-
ship between resilience and resistance for several types of 
estuary variables (hydrology, hydrography, biogeochemistry, 
biota) in the response of estuaries in Texas to Hurricane 
Harvey. Our disturbance length metric is similar to the return 
times Patrick et al. (2020) observed, though the resistance 
measures are not directly comparable (log response ratio vs. 
peak z-score). Another recent synthesis of response to TCs 
for thousands of time series from 26 TCs in the Northern 
Hemisphere (Patrick et al. 2022) across different ecosys-
tems and variable types also found a negative relationship 
between resistance and resilience using definitions that con-
sider disturbance driver and system response magnitudes. 
Applying similar definitions to our results (resistance = −1* 
ln(peak z-score / TC precipitation), resilience = ln(peak 
z-score / disturbance duration)), we find weak negative cor-
relations between resilience and resistance for salinity and 
dissolved oxygen salinity (r = −0.14 and −0.23 for salinity 
and oxygen, respectively). Taken together, our findings and 
other recent studies suggest that the relationship between 
resistance and resilience is likely dependent on the variable 
considered, the geographic scale (e.g., within/among estuar-
ies), and ecosystem type, as well as the specific quantitative 
definition used for resistance and resilience.

By analyzing the impact of many tropical cyclones on 
several estuaries, we were able to examine the role that TC 
and site properties play in determining disturbance charac-
teristics. Both TC and site properties were important. Total 
precipitation was the most common TC variable related to 
disturbance responses, with higher precipitation associated 
with more likely, earlier starting, longer, and more severe 
disturbances. This finding is important given the projected 
increase in tropical cyclone severity and precipitation 
amounts due to climate change (Patricola and Wehner 2018). 
Mean salinity was the most common station property asso-
ciated with disturbance responses. Locations with higher 
salinity had more severe and earlier salinity disturbances, 
as well as later dissolved oxygen disturbances. TCs with 
higher maximum and longer duration wind speeds had ear-
lier and longer lasting disturbances. These general patterns 
are a first step to developing a predictive understanding 
of disturbance characteristics and demonstrate the distur-
bance detection algorithm’s ability to quantitatively char-
acterize disturbances across different locations, storms, and 
variables. However, additional storm and site (see below) 
and interactions between them are undoubtedly needed 
to explain the highly variable disturbance characteristics 
observed in this study. Identifying drivers of disturbances 
is important to identify current estuarine locations that are 

highly susceptible to disturbance and how future climate 
change may impact responses. Insights may offer ways to 
increase ecosystem resilience through management of infra-
structure (e.g., water retention/release), habitat restoration 
to promote refuges and portfolio effects (Schindler et al. 
2015), and watershed land management to limit run-off dur-
ing extreme storms.

While the disturbance detection method identified and 
characterized disturbances, it also has limitations. The 
method quantifies any difference between the distribution 
of values in the test and reference periods but does not dis-
tinguish between different types/directions of disturbances 
(e.g., if a change is to higher or lower values, or increased/
decreased variability). There also is not a direct correspond-
ence between the disturbance statistics (dw or z-score) and 
physically meaningful ecosystem state values or thresholds 
(e.g., oxygen or salinity concentrations at which organisms 
are harmed). These issues can be addressed by first using 
the method to demarcate disturbances and then to compare 
differences in the mean, variance, etc. of the test and refer-
ence years within those periods (Fig. 6). Finally, the method 
requires both high frequency and long-term measurements 
to identify disturbances, which limits the variables and loca-
tions to which it can be applied. However, these types of 
data are increasingly available from sensors that can meas-
ure important ecosystem state variables (Porter et al. 2012). 
The data from NOAA’s National Estuarine Research Reserve 
System illustrates the immense value of long-term programs 
measuring the same variables at different sites, especially for 
events that are unpredictable but have large consequences 
like tropical cyclones.

Despite these limitations, our findings represent an 
advance in the study of patterns and drivers of disturbance at 
broad spatial and temporal scales in estuaries. By detecting 
disturbances that cause diverse deviations from baseline var-
iability and quantifying several important disturbance char-
acteristics, our method overcomes many of the constraints 
that have previously limited studies to one or a few TCs and/
or locations (Pruitt et al. 2019). The approach fits naturally 
within proposed frameworks for understanding disturbance 
in ecological and socio-economic systems (Gaiser et al. 
2020). For TCs specifically, Hogan et al. (2020) recently 
provided a framework for evaluating ecosystem component 
response to disturbances including a detailed conceptual 
diagram (see their Fig. 2). This study includes many of the 
framework components and applies them to provide quan-
titative generalization across many locations and storms: 
disturbances to salinity and dissolved oxygen in estuaries 
generally start soon after tropical cyclones pass and typi-
cally recover within days, though weeks and months long 
disturbances do occur. Most (~90%) salinity disturbances 
cause declines in mean salinity driven by precipitation and 
discharge as opposed to increases from storm surge. In 
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contrast, dissolved oxygen disturbances were more evenly 
split between increases and decreases. Properties of both 
tropical cyclones and the locations they impact are related to 
disturbance response. Future work could extend our findings 
to additional drivers and mechanisms including the role of 
upstream land use, antecedent conditions, estuary or habitat 
type, and hydrodynamics; the effect of disturbance impacts 
on specific biota; and other variables besides salinity and 
dissolved oxygen. For these and other ecosystem variables 
where measurements can be collected by sensors and ana-
lyzed in near-real time, knowledge that a disturbance is start-
ing also offers the exciting possibility of quickly directing 
additional data collection and management actions to mini-
mize impacts.
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