Habitat mapping the GTMNERR using semiautomated classification and drone imagery

Michael D. Dickson

The importance of habitat mapping...

Habitat Cover

Ecosystem function

Track Changes

Presentation Overview

Objectives

Map in an efficient and non-destructive manner

Achieve an accuracy adequate to infer change

Explore the efficacy of remote sensing techniques

1 m resolution NAIP imagery collected via manned aircraft

Talking Points

North Section of GTM

Part 1: Map Generation

Part 2: Accuracy Assessment (AA)

Drone Use for AA

Part 1: Map Generation

There are two methods for map generation...

Semi-Automation

...and what was used was a combination of these two

Part 1: Map Generation

Class	GTM Description	NOAA Description	Code	Acres
1	Herbaceous Cover	Herbaceous Upland	6130	40.26
2	Freshwater Marsh	Emergent Wetland	5230	489.79
3	Freshwater Pond	Aquatic Bed	4130	35.91
4	Wetland Hardwood	Forested Wetland	5250	175.15
5	Oak Hammock	Forested Upland	6150	3290.39
6	Pine Flatwoods	Forested Upland	6150	1978.02
7	Scrub	Scrub-Shrub Upland	6240	702.87
8	Sand	Unconsolidated Substrate	6220	143.01
9	Open Water	N/A	N/A	5404.69
10	Intertidal Marsh	Emergent Wetland	2260	5854.95
11	Impervious Cover	Impervious Cover	8110	8.96
12	Built-Up Cover	Built-Up Cover	8320	3.58
13	Supratidal Marsh	Emergent Wetland	2340	545.22
14	Cleared Land	Cleared Land	8156	8.11
15	In-water Residential	Residential Cover	8330	2.35

Proportion of Coverage

Part 2: Accuracy Assessment

Stratified Random Design

DJI Mavic Pro

Automated Flights

Drones

Mission Planning

GIS

Part 2: Accuracy Assessment

Part 2: Accuracy Assessment

HABITAT	CATEGORY	Class 1	Class 2	Class 3	Class 4	Class 5	Class 6	Class 7	Class 8	Class 9	Class 10	Class 11	Class 12	Class 13	TOTALS
Intertidal Saltmarsh	Class 1	63	3	0	0	0	0	2	0	0	0	0	0	1	69
Supratidal Marsh	Class 2	0	22	0	0	0	0	5	0	0	0	0	0	0	27
Freshwater Pond	Class 3	0	0	10	4	0	0	0	0	0	0	0	0	0	14
Freshwater Marsh	Class 4	1	0	0	106	4	0	11	0	2	0	0	0	0	124
Wetland Hardwood	Class 5	0	0	0	0	33	0	13	0	0	0	0	0	0	46
Herbaceous Cover	Class 6	0	0	0	0	0	15	2	0		0	0	0	0	18
Inland Upland	Class 7	9	5	1	8	11	1	613	0	21	0	0	0	0	669
Sand	Class 8	0	0	0	0	0	1	0	12	0	0	0	0	0	13
Scrub-Shrub	Class 9	0	0	0	5	0	0	7	0	137	0	0	0	0	149
Impervious Cover	Class 10	0	0	0	0	0	0	0	0	0	9	0	2	0	11
Built-Up Cover	Class 11	0	0	0	0	0	0	1	0	0	0	4	0	0	5
Cleared Land	Class 12	1	0	0	0	0	0	0	0	0	0	0	7	1	9
Water	Class 13	2	28	0	0	0	0	0	0	0	0	0	0	102	132
TOTALS		76	58	11	123	48	17	654	12	161	9	4	9	104	1286

- 1,286 acquired photos
- 5 days
- Less than 10 hrs flight time

- Overall Accuracy: 88%
- Kappa Stat: 83% (± 3%)
- Occurrence of Error

Assessing Error

Summary

Were the objectives met?

- Maps were generated and assessed efficiently with no impact
- Drones can be an effective tool

Pros

- Efficient
- Non-invasive
- Scalable
- Cost effective
- Ideal for general land cover classifications

Cons

- High initial cost
- Logistical constraints of drone flying
- Difficult to interpret
 species composition
- Accuracy photos lack in situ context

Summary

Class	GTM Description	NOAA Description	Code	Acres
1	Herbaceous Cover	Herbaceous Upland	6130	40.26
2	Freshwater Marsh	Emergent Wetland	5230	489.79
3	Freshwater Pond	Aquatic Bed	4130	35.91
4	Wetland Hardwood	Forested Wetland	5250	175.15
5	Oak Hammock	Forested Upland	6150	3290.39
6	Pine Flatwoods	Forested Upland	6150	1978.02
7	Scrub	Scrub-Shrub Upland	6240	702.87
8	Sand	Unconsolidated Substrate	6220	143.01
9	Open Water	N/A	N/A	5404.69
10	Intertidal Marsh	Emergent Wetland	2260	5854.95
11	Impervious Cover	Impervious Cover	8110	8.96
12	Built-Up Cover	Built-Up Cover	8320	3.58
13	Supratidal Marsh	Emergent Wetland	2340	545.22
14	Cleared Land	Cleared Land	8156	8.11
15	In-water Residential	Residential Cover	8330	2.35

Is 83% good enough?

Michael Dickson

Spatial Ecologist Guana Tolomato Matanzas NERR Michael.Dickson@dep.state.fl.us 904-461-4057