Oysters and Mussels in the Guana River

Hallie Fischman PhD Candidate, University of Florida halliefischman@ufl.edu

Nutrient Mitigation

Water filtration

Habitat

Coastal Protection

Commercial and recreational fisheries

Nutrient Mitigation

Water filtration

Photo Credit: Maryland Seafood

Habitat

Photo Credit: North Carolina Department of Environmental Quality

Coastal Protection

Coastal Protection

Commercial and recreational fisheries

Photo Credit: Hilton Head Island Packet

Nutrient Mitigation

Water filtration

Habitat

Coastal Protection

Commercial and recreational fisheries

Interplay of shellfish and water quality

Interplay of shellfish and water quality

Understanding the interplay of shellfish and water quality is critical for incorporating shellfish into future water quality solutions

The Guana River

The Guana River

Two aims:

- 1. Quantify the distribution and density of natural bivalves in the estuary
- Evaluate how estuarine gradients (nutrients, inundation) alter bivalve growth rates and health

Bivalve mapping

- Two methods to estimate distribution and density:
 - Drone based for oysters
 - Field surveys for mussels

Oyster mapping

17

78.11 m²

Mussel Mapping

Bivalve Transplant Experiment

- Nutrient Gradient: Transplanted oysters and mussels from one site at four sites
- Inundation Gradient: Transplanted mussels and oysters at 3 elevation per species at one site
 - Bivalves were tagged and measured before deployment
- Measured growth and condition index after 6 months
 - Cl=tissue weight/shell weight x 100

Oyster Growth

Mussel Growth

Oyster Growth

Oyster Condition Index

Mussel Growth

Mussel Condition Index

Elevation Gradient Transplant

Elevation Gradient Transplant

Oyster Growth

Oyster Condition Index

Elevation Gradient Transplant

Mussel Growth

Mussel Condition Index

Summary of Transplant

- Nutrient gradient altered the growth rate of both oysters and mussels
 - Opposite patterns between species: oyster growth was enhanced at the dam and mussels at the southern end
 - Condition Index mirrored growth trends
- Increased inundation time increased growth rates of both species
 - Condition index did not vary between elevations
- Growth differences were greater in the nutrient gradient experiment than the inundation experiment

Conclusions

- In this project, we are collecting data to inform how bivalves can be used as part of a water quality solution in Florida
- The Guana has extensive natural populations of mussels and oysters
- Transplant experiment revealed responses to varied nutrients and inundation time
 - Species-specific differences may be important for restoration designs

Thank you!

Hallie Fischman PhD Student, University of Florida halliefischman@ufl.edu