

Population biology of the brown anole on spoil islands in the GTM reserve

Dan Warner

Auburn University Department of Biological Sciences

A collaborative effort

Cox Laboratory Department of Biology University of Virginia

Evolution

Ecology Physiology

Department of Biological Sciences Auburn University

Invasive species

Major component of Global Change Biology

Numerous impacts on native environments

Environmental and economic impacts are often difficult to predict

Long-term monitoring will provide insights

Brown anole

Also in California, Hawaii, Grenada, Taiwan, Singapore (and probably elsewhere)

Invasion history of brown anoles in Florida

Brown anoles are well studied, but...

Most research focuses on:

- Reproductive and behavioral ecology
- Evolutionary biology
- Community & population biology in native range
- History of the invasion

Less known about:

- Population dynamics in invasive ranges
- Reproductive behaviors in the field
- Effects of egg incubation environments
- Embryo and juvenile life stages

Research objectives

- Better understand population demographics across populations and time, particularly for young age classes.
- 2) Understand reproductive behaviors (e.g., nesting) and the consequences on egg survival.

General field protocols

Survival rates on three islands

Nesting ecology of brown anoles

What microhabitats do anoles use for nesting?

What are the consequences of nest environments?

Summary & conclusions

Demographic parameters (survival rates) vary across islands and through time

Females choose relatively cool & moist microhabitats for nesting

Eggs exposed to cooler temperature have relatively high hatchings success

Acknowledgements

Field and lab assistance: R. Brandt, A. Buckelew, C. Cates, R. Cox, A. Chung, D. Delaney, M. Denaburg, A. Dhawan, A. Durso, A. Karhl, S. French, J. Hall, A. Harrison, F. Janzen, T. Langkilde, M. Lovern, T. Mitchell, P. Pearson, J. Pruett, A. Reedy, T. Schwartz, A. Steele, S. Tiatragul, J. Ward, F. Wideman

Staff at Guana Tolomato Matanzas National Estuarine Research Reserve

Funding

PHILOSOPHICAL

The Society for Integrative & Comparative Biology

CIETY